Senin, 14 Mei 2018

Pengantar Komputer Kuantum


PENGANTAR KOMPUTER KUANTUM


NAMA            : Noffrihendri
NPM               : 57414999
Kelas               : 4IA17
Matkul            : Pengantar komputasi modern#
Dosen              : Fivi Syukriah



PENGERTIAN COMPUTER KUANTUM
Pengertian sederhana dari computer kuantum adalah jenis chip processor terbaru yang diciptakan berdasar perkembangan mutakhir dari ilmu fisika (dan matematika) quantum. Singkatnya, chip konvensional sekarang ini perlu diganti dengan yang lebih baik.
Pengertian komputer kuantum adalah merupakan suatu alat hitung yang menggunakan sebuah fenomena mekanika kuantum, misalnya superposisi dan keterkaitan, untuk melakukan operasi data. Dalam komputasi klasik, jumlah data dihitung dengan bit; dalam komputer kuantum, hal ini dilakukan dengan qubit.
Prinsip dasar komputer kuantum adalah bahwa sifat kuantum dari partikel dapat digunakan untuk mewakili data dan struktur data, dan bahwa mekanika kuantum dapat digunakan untuk melakukan operasi dengan data ini. Dalam hal ini untuk mengembangkan komputer dengan sistem kuantum diperlukan suatu logika baru yang sesuai dengan prinsip kuantum.

SEJARAH MENGENAI COMPUTER KUANTUM
Ide mengenai komputer kuantum ini berasal dari beberapa fisikawan antara lain Charles H. Bennett dari IBM, Paul A. Benioff dari Argonne National Laboratory, Illinois, David Deutsch dari University of Oxford, dan Richard P. Feynman dari California Institute of Technology (Caltech).
Pada awalnya Feynman mengemukakan idenya mengenai sistem kuantum yang juga dapat melakukan proses penghitungan. Fenyman juga mengemukakan bahwa sistem ini bisa menjadi simulator bagi percobaan fisika kuantum.
Selanjutnya para ilmuwan mulai melakukan riset mengenai sistem kuantum tersebut, mereka juga berusaha untuk menemukan logika yang sesuai dengan sistem tersebut. Sampai saat ini telah dikemukaan dua algoritme baru yang bisa digunakan dalam sistem kuantum yaitu algoritme shor dan algoritme grover.
Walaupun komputer kuantum masih dalam pengembangan, telah dilakukan eksperimen dimana operasi komputasi kuantum dilakukan atas sejumlah kecil Qubit. Riset baik secara teoretis maupun praktik terus berlanjut dalam laju yang cepat, dan banyak pemerintah nasional dan agensi pendanaan militer mendukung riset komputer kuantum untuk pengembangannya baik untuk keperluan rakyat maupun masalah keamanan nasional seperti kriptoanalisis.
Telah dipercaya dengan sangat luas, bahwa apabila komputer kuantum dalam skala besar dapat dibuat, maka komputer tersebut dapat menyelesaikan sejumlah masalah lebih cepat daripada komputer biasa. Komputer kuantum berbeda dengan komputer DNA dan komputer klasik berbasis transistor, walaupun mungkin komputer jenis tersebut menggunakan prinsip kuantum mekanik. Sejumlah arsitektur komputasi seperti komputer optik walaupun menggunakan superposisi klasik dari gelombang elektromagnetik, namun tanpa sejumlah sumber kuantum mekanik yang spesifik seperti keterkaitan, maka tak dapat berpotensi memiliki kecepatan komputasi sebagaimana yang dimiliki oleh komputer kuantum.


PENJELASAN TENTANG QUBIT
Dalam sebuah percobaan yang terkenal, cahaya dari satu sumber melewati dua celah, menciptakan sebuah pola interferensi pada layar. Bahkan ketika sumber cahaya hanya memancarkan satu foton pada suatu waktu, pola interferensi muncul. Standar teori kuantum mendalilkan bahwa setiap foton bergerak pada.
kedua jalur (path) sekaligus. Dengan demikian, partikel dapat berada di dua tempat pada saat yang sama. Dalam situasi tersebut, kita mengatakan bahwa posisi partikel berada dalam superposisi dari dua keadaan.
Dua jalur perjalanan partikel dapat mewakili dua keadaan dari sebuah bit, 0 dan 1. Dalam mekanika kuantum, apabila sistem memiliki dua atau lebih peluang yang memungkinkan, ia dapat menjelajahi mereka secara bersamaan. Setiap sistem dua keadaan, seperti jalur foton, dapat mewakili qubit. Dalam komputer kuantum, kita malah mungkin menggunakan dua orbit elektron dalam atom untuk mewakili qubit. Atom bisa eksis dalam superposisi dari 0 dan 1, mirip seperti lonceng yang dipukul dapat bergetar pada dua frekuensi yang berbeda secara bersamaan.

Perbedaan computer kuantum dan computer konvesional

Spesifikasi computer klasik


Pada pelaksanaannya, komputer klasik tergantung pada tingkat akhir yakni pada prinsip-prinsip seperti yang dijabarkan oleh Aljabar Boolean. Data-data perlu diproses pada kondisi biner eksklusif pada tiap-tiap titik waktu atau bit. Sedangkan pada waktu itu tiap-tiap transistor maupun kapasitor harus pada keadaan 0 atau 1 sebelum berubah status yang sekarang diukur dalam miliar detik.
Komputer kuantum merupakan peralatan yang mempergunakan prinsip-prinsip yang diambil dari teori kuantum dalam mengolah informasi. Komputer kuantum bisa memproses seluruh ragam informasi mengikuti hukum-hukum fisika kuantum sehingga mampu melakukan tugas-tugas dengan mempergunakan seluruh kemungkinan permutasi dengan waktu yang bersamaan.


Spesifikasi computer kuantum


Komputer kuantum merupakan alat yang mempergunakan prinsip-prinsip teori kuantum dalah pengolahan informasi. Pada teori kuantum, dijelaskan mengenai perilaku obyek-obyek yang berukuran mikro antara lain molekul, atom serta partikel. Dunia makroskopis berbeda dengan dunia mikroskopis. Dalam prinsip kuantum, materi bisa berlaku sebagaimana partikel serta gelombang. Inilah yang disebut dualisme partikel-gelombang yang merupakan satu keunikan dari teori kuantum.
Sehubungan dengan teori kuantum, maka komputer kuantum juga bisa memproses seluruh jenis informasi yang diproses oleh komputer klasik. Selain itu salah satu perbandingan komputer klasik dan komputer kuantum, adalah  komputer kuantum memiliki satu sifat unik yakni superposisi kuantum untuk melaksanakan komputasi yang tidak bisa dilakukan oleh komputer klasik.

MANFAATMANFAAT KOMPUTER KUANTUM DI MASA DEPAN

1. Kriptografi dan Algoritma Peter Shor
Pada tahun 1994 Peter Shor (Bell Laboratories) menemukan algoritma kuantum pertama yang secara prinsip dapat melakukan faktorisasi yang efisien. Hal ini menjadi sebuah aplikasi kompleks yang hanya dapat dilakukan oleh sebuah komputer kuantum. Pemfaktoran adalah salah satu masalah yang paling penting dalam kriptografi. Misalnya, keamanan RSA (sistem keamanan perbankan elektronik) kriptografi kunci publik tergantung pada pemfaktoran dan hal itu akan menjadi masalah yang besar. Karena banyak fitur yang bermanfaat dari komputer kuantum, para ilmuwan berupaya lebih untuk membangunnya. Apabila, pemecahan segala jenis enkripsi saat ini memerlukan waktu hampir seabad pada komputer yang ada, mungkin hanya memakan waktu beberapa tahun pada komputer kuantum (Maney, 1998).

2. Kecerdasan Buatan (Artificial Intelligence)
Seperti telah dijelaskan sebelumnya bahwa computer kuantum akan jauh lebih cepat dan konsekuensinya akan mampu melaksanakan sejumlah besar operasi dalam periode waktu yang sangat singkat. Di sisi lain, peningkatan kecepatan operasi akan membantu komputer untuk belajar lebih cepat meskipun dengan menggunakan salah satu metode yang paling sederhana, yaitu ”mistake bound model for learning”.

3. Manfaat Lain
Kinerja tinggi akan memungkinkan kita untuk mengembangkan algoritma kompresi yang kompleks, pengenalan suara dan citra, simulasi molekular, keacakan sesungguhnya (true randomness) dan komunikasi kuantum. Keacakan sangat penting dalam simulasi. Simulasi Molekular sangat penting untuk pengembangan aplikasi simulasi pada bidang kimia dan biologi. Dengan bantuan komunikasi kuantum baik pengirim maupun penerima akan diberitahukan jika ada penyusup yang akan mencoba untuk menangkap sinyal. Qubits juga memungkinkan lebih banyak informasi yang dapat dikomunkasikan per bit. Komputer kuantum menjadikan
komunikasi lebih aman.





Referensi /  sumber